Как из метана сделать бензин


Сами делайте дома бесплатный бензин

Руководство по изготовлению в домашних условиях 100% заменителя бензина любой марки из воды и бытового газа, поступающих в квартиру.

Общее описание

Получаемая при помощи данного описания жидкость – метанол или метиловый спирт.

В чистом виде метанол применяется в качестве растворителя, а так же как высокооктановая добавка к моторному топливу, а также как самый высокооктановый (с октановым числом равным 150) бензин. Это тот самый бензин, которым заправляют гоночные мотоциклы и автомобили. Зарубежные исследования показали, что двигатель, работающий на метаноле, служит во много раз дольше чем при использовании обычного автомобильного бензина. При неизменном рабочем объеме двигателя его мощность повышается на 20%. Выхлоп двигателя, работающего на этом топливе, экологически чист и при проверке его на токсичность вредные вещества практически отсутствуют.

Малогабаритный аппарат для получения этого топлива прост в изготовлении, не требует особых знаний и дефицитных деталей, безотказен в работе. Его производительность зависит от различных причин, в том числе и от габаритов. Аппарат, схему и описание сборки которого предлагаем вашему вниманию, при Д=75мм дает три литра готового топлива в час, имеет вес около 20 кг, и габариты приблизительно: 20 см в высоту, 50 см в длину и 30 см в ширину.

Внимание: метанол является сильным ядом. Он представляет собой бесцветную жидкость с температурой кипения 65оС, имеет запах, подобный запаху обычного питьевого спирта, и смешивается во всех отношениях с водой и многими органическими жидкостями. Помните о том, что 30 миллилитров выпитого метанола смертельны!

Принцип действия и работа аппарата

Рисунок 1 – Схема принципиальная аппарата

Водопроводная вода подключается к «входу воды» (15) и, проходя далее, разделяется на два потока: один поток через краник (14) и отверстие (С) входит в смеситель (1), а другой поток через краник (4) и отверстие (Ж) идет в холодильник (3), проходя через который вода, охлаждая синтез-газ и конденсат бензина, выходит через отверстие (Ю).

Рисунок 2 – Смеситель

Бытовой природный газ подключается к трубопроводу «Вход газа» (16). Далее газ входит в смеситель (1) через отверстие (Б), в котором перемешивается с паром воды, затем нагревается на горелке (12) до температуры 100 – 120оС. Далее из смесителя (1) через отверстие (Д) нагретая смесь газа и водяного пара поступает в реактор (2) через отверстие (В).

Реактор (2) наполнен катализатором №1, состоящим из 25% никеля и 75% алюминия (состоит из стружки или в зерен, промышленная марка ГИАЛ-16). В реакторе происходит образование синтез газа под воздействием температуры от 500оС и выше, получаемой за счет нагрева горелкой (13). Далее нагретый синтез-газ входит через отверстие (Е) в холодильник (З), где он должен охладиться до температуры 30-40оС или ниже. Затем охлажденный синтез-газ через отверстие (И) выходит из холодильника и через отверстие (М) входит в компрессор (5), в качестве которого можно использовать компрессор от любого бытового холодильника. Далее сжатый синтез-газ с давлением 5-50 через отверстие (Н) выходит из компрессора и через отверстие (О) поступает в реактор (6).

Рисунок 3 – Реактор

Реактор (6) заполнен катализатором №2, состоящим из стружки 80% меди и 20% цинка (состав фирмы «ICI», марка в России СНМ-1). В этом реакторе, который является самым главным узлом аппарата, образуется пар синтез-бензина. Температура в реакторе не должна превышать 270оС, что можно проконтролировать градусником (7) и регулировать краником (4). Желательно поддерживать температуру в пределах 200-250оС, можно и ниже.

Затем пары бензина и не прореагировавший синтез-газ через отверстие (П) выходят из реактора (6) и через отверстие (Л) входят в холодильник (З), где пары бензина конденсируют и через отверстие (К) выходят из холодильника. Далее конденсат и не прореагировавший синтез-газ входят через отверстие (У) в конденсатор (8), где накапливается готовый бензин, который выходит из конденсатора через отверстие (Р) и краник (9) в какую-либо емкость.

Рисунок 4 – Холодильник

Отверстие (Т) в конденсаторе (8) служит для установки манометра (10), который необходим для контроля давления в конденсаторе. Оно поддерживается в пределах 5-10 атмосфер или больше в основном с помощью краника (11) и частично краника (9). Отверстие (Х) и краник (11) необходимы для выхода из конденсатора не прореагировавшего синтез газа, который идет на рециркуляцию обратно в смеситель (1) через отверстие (А). Краник (9) регулируют так, чтобы постоянно выходил чистый жидкий бензин без газа. Лучше будет, если уровень бензина в конденсаторе будет увеличиваться, чем уменьшаться. Но самый оптимальный случай, когда уровень бензина будет постоянным (что можно проконтролировать путем встроенного стекла или какого-либо другого способа). Краник (14) регулируют так, чтобы в бензине не было /воды/ и в смесителе пара образовывалось лучше меньше, чем больше.

Рисунок 5 – Конденсатор и рисунок 6 – Реактор

Запуск аппарата

Открывают доступ газа, вода (14) пока закрыта, горелки (12), (13) работают. Краник (4) полностью открыт, компрессор (5) включен, краник (9) закрыт, краник (11) полностью открыт.

Затем приоткрывают краник (14) доступа воды, а краником (11) регулируют нужное давление в конденсаторе, контролируя его манометром (10). Но не в коем случае не закрывайте краник (11) полностью!!! Далее, минут через пять, клапаном (14) доводят температуру в реакторе (6) до 200-250оС. Затем чуть-чуть приоткрывают краник (9), из которого должна пойти струя бензина. Если она будет идти постоянно – приоткройте краник больше, если будет идти бензин в смеси с газом – приоткройте краник (14). Вообще, чем на большую производительность настроите аппарат, тем лучше. Содержание воды в бензине (метаноле) вы можете проверить с помощью спиртометра. Плотность метанола равна 793 кг/м3.

Данный аппарат желательно изготавливать из нержавеющей стали или железа. Все детали изготовлены из труб, в качестве тонких соединительных труб можно использовать медные трубки. В холодильнике необходимо сохранить соотношение X:Y=4, то есть, например, если X+Y=300 мм, то X должно быть равно 240 мм, а Y, соответственно, 60 мм. 240/60=4. Чем больше витков уместится в холодильнике с той и с другой стороны, тем лучше. Все краники применены от газосварочных горелок. Вместо краников (9) и (11) можно использовать редукционные клапана от бытовых газовых баллонов или капиллярные трубки от бытовых холодильников. Смеситель (1) и реактор (2) нагреваются в горизонтальном положении (смотрите чертеж).

Ну вот, и вся конструкция. В заключении следует добавить, что цикл статей по изготовлению этой конструкции в домашних условиях, било опубликовано в журналах “Приоритет” в 1991, 1992, 1993 гг., но полностью готовый проект опубликован так и не был (зажали обещанные правильные катализаторы для подписчиков). В данных номерах были чертежи реактора с электрической схемой управления и конструкция охладителя, после чего г-н Вакс (автор статьи) вежливо извинился и сообщил, что дальнейшая публикация прекращается по просьбе силовых структур СССР и тем кто хочет повторить данную установку поле творчества неограниченно.

Квасников Игорь, изготавлиавшый эту конструкцию сделал уточнение:Категорически запрещается подавать воду прямо из крана в реактор так как водопроводная вода содержит хлор , который моментально отравит катализатор 2-го реактора. Тоже самое относится и к газу, который содержит примеси серы и активных органических веществ. В своей установке я применял дистиллированную воду и моноэтаноламинную очистку газа, все это даёт неплохой результат. После более детальной проработки оригинальной статьи всплывает множество неточностей которые следует уточнять и дорабатывать.

P.S. На начало 2012 года стоимость готовой к использованию установки, производительностью 1 литр в час составляла более 2000 у. е.

P.S.2 В данный момент времени изготовление описанной в статье установки не представляется возможным, поскольку цеха, где происходило изготовление комплектующих и сборка, сейчас разрушены, так как находятся в зоне конфликта.

Комментарии:

Удельная теплота сгорания веществУ Николая Джуманчука во дворе есть самодельный газ, получаемый из коровьего навоза

sintezgaz.org.ua

Можно ли получить бензин из угля

Содержание:

  • Как происходит выделение бензина из угля?
  • Процесс гидрогенизации
  • Получение бензина путем газификации
  • Выводы

Далеко не каждая европейская, да и любая страна мира может похвастать большими запасами нефти. Зато углеводородное топливо в виде бензина или солярки активно используется во всех странах. В то же время залежи бурого и каменного угля встречаются куда чаще, отсюда и возникла идея получать дизельное топливо и бензин из угля. В этой статье мы рассмотрим, как это делается на производстве и можно ли что-то подобное организовать в условиях частного домашнего хозяйства.

Как происходит выделение бензина из угля?

Стоит отметить, что переработка угля с целью получить разные виды моторного топлива – вовсе не миф. Более, того существует две проверенных методики, реализованные на практике еще в начале прошлого века.

В те времена нацистская Германия, стремящаяся завоевать всю Европу, именно этими способами обеспечивала свою военную технику горючим, поскольку собственных месторождений нефти у нее нет. В то же время в распоряжении страны имелись залежи бурого угля, из которого на двух десятках заводов производился синтетический бензин и дизельное топливо.

Для справки. Обе методики были изобретены разными немецкими учеными в начале 20-го века, соответственно, получили их имена.

Как оказалось, уголь по своему химическому составу не слишком отличается от нефти. Основа у них общая – горючие соединения углерода с водородом, только доля водорода в нефти значительно больше. Если число водорода в углях удастся уравнять с нефтью, то и получение жидкого горючего станет реальностью. Вот способы решения проблемы:

  • гидрогенизация, иначе – ожижение (процесс Бергиуса).
  •  газификация с последующим синтезом топлива (процесс Фишера – Тропша).

Чтобы понять, удастся ли наладить выделение бензина в домашних условиях, надо получить общее представление об этих химико-технологических процессах, о них будет рассказано ниже.

Процесс гидрогенизации

Для успешного проведения процесса и получения до 800 кг жидкого топлива из 1 т сырья берут бурый или каменный уголь. Главное условие эффективного достижения результата – наличие в углях 35% летучих веществ. Перед переработкой их перемалывают, измельчая до пылевидной фракции, а затем просушивают. После этого угольную фракцию смешивают с мазутом или тяжелыми маслами, чтобы получилось сырье в виде пасты.

Во время протекания процесса деструктивной гидрогенизации технология предусматривает прямое добавление недостающего водорода в уголь.

Для этого сырье помещают в специальный автоклав и производят его нагрев. При этом давление внутри сосуда достигает 200 Бар, а температура – 500 °С. Мало того, в зоне химической реакции должны находиться вещества — катализаторы и растворители. По данной методике получение бензина из угля проходит внутри автоклава в 2 стадии:

В сосуде под большим давлением и при высокой температуре протекает несколько сложных химических реакций. Чтобы не нагружать рассказ специфическими терминами, поясним простыми словами: в автоклаве происходит насыщение угля водородом и распад сложных органических соединений на простые. В результате после операций очистки на выходе получаем синтетическое дизтопливо или бензин. Это зависит от условий протекания процесса и степени трансформации угольно-масляной смеси. Но выходу горючего из установки предшествует еще ряд операций:

  • центрифугирование;
  • полукоксование;
  • дистилляция.

Как видите, наладить столь сложное производство своими руками не представляется возможным. Главная сложность – оборудование, вряд ли удастся такое изготовить самому. Взять хотя бы автоклав, где давление выше, чем в кислородных баллонах. Да и в целом подобное производство представляет взрывопожарную опасность.

Получение бензина путем газификации

Данный метод, изобретенный немецкими учеными Ф. Фишером и Г. Тропшем, предусматривает производство дизельного топлива и бензина путем предварительной газификации угольного сырья. Это происходит в большой емкости – реакторе при температуре до 350 °С и давлении не более 30 Бар. Хотя здесь условия и не настолько жесткие, как при гидрогенизации, но реализовать их ничуть не проще. Например, потому что сквозь слой угля надо под большим давлением продувать перегретый водяной пар, а значит, не обойтись без мощного парового котла.

После газификации на выходе из реактора образуется так называемый синтез-газ, состоящий из водорода и обычного угарного газа (СО). Кстати, сингаз можно прямо использовать в качестве газообразного топлива без последующей переработки.

Полученные газы поступают во второй реактор, где и происходит окончательная переработка угля в жидкое топливо. Там же располагаются вещества – катализаторы. В промышленности для этой цели могут использоваться разные соединения, но любое из них обязательно содержит железо, никель или кобальт. Не вдаваясь в тонкости химии, отметим, что на выходе из второго реактора получается горючее, которое должно еще пройти процедуру крекинга. То есть, разделение на бензин и дизельное топливо из угля.

Побочными продуктами реакции являются различные вещества и парафин. Среди выделяющихся летучих веществ наибольшая доля приходится на углекислый газ, что считается большой проблемой производства горючего подобным методом. Также достаточно быстро теряет активность катализатор, поэтому его постоянно требуется обновлять. Эти факторы, да еще ряд не столь значительных причин, приводят к высокой себестоимости продукта. При цене на нефть 50 долларов за баррель производство бензина из угля методом Фишера – Тропша считается нерентабельным.

Существует и другой метод газификации углей – термический. Он схож с явлением пиролиза, поскольку осуществляется нагревом сырья в емкости извне и при отсутствии кислорода. Другое дело, что разложение твердого топлива на газы происходит при температуре 1200 °С, а для этого требуется соответствующее оборудование. Позитивная сторона термического метода состоит в том, что часть пиролизных газов направляется на подогрев исходного сырья, а другая – на синтез бензина. За счет этого снижаются затраты на энергоносители, так как уголь во время разложения может подогревать себя сам.

Для справки. На просторах интернета можно найти описание разных установок, с помощью которых можно получить бензин из природного газа в домашних условиях. Вначале он конвертируется в синтез-газ, а затем перерабатывается в жидкое топливо. Даже если считать, что эти самодельные аппараты работоспособны, провести газификацию угля гораздо сложнее.

Выводы

Невзирая на то, что выделение моторного топлива из каменного и бурого угля вполне реально и давно проверено на производстве, организовать его в домашних условиях вряд ли возможно. Конечно, всегда найдется несколько умельцев – энтузиастов, что любят добиваться поставленной цели и смогут синтезировать бензин своими руками. Но для этого надо подробно изучить технологию и прилично повозиться с оборудованием, не говоря уже о пожарной опасности.

Для широкого круга домовладельцев и автолюбителей получение солярки и бензина из угля недоступно. А если подойти к вопросу с точки зрения экономики, то и нерентабельно. На данный момент, пока на эту тему не появилось новых изобретений и разработок, проще и надежнее пользоваться обычным, «нефтяным» бензином.

cotlix.com

Бензин из газа

Подробности Категория: Б Просмотров: 1076

БЕНЗИН ИЗ ГАЗА извлекается из нефтяного газа. Нефтяной газ состоит гл. обр. из газообразных углеводородов и увлекаемых ими паров жидких углеводородов парафинового ряда; часто встречаются в нем также небольшие количества углекислоты, азота, гелия, а также углеводородов непредельных рядов. Водород и окись углерода встречаются в нефтяном газе лишь в виде следов. Если в 30 м3 нефтяного газа содержится более 4,8 л бензина, его называют «богатым» или «жирным», если же менее - «сухим» или «бедным».

Знание физических и химических основных свойств углеводородов парафинового ряда, составляющих главную часть нефтяного газа, лежит в основе производства бензина из нефтяного газа. Углеводороды метан и этан, газы, составляющие главную часть нефтяного газа, не сжижаются при нормальных условиях, а углеводороды бутан, пентан, гексан и гептан легко конденсируются, и из них, собственно, и получается газовый бензин. Бензин из нефтяного газа может быть получен компрессией или абсорбцией.

Способ компрессии. Этот способ получения газового бензина из нефтяного газа основан на законе Дальтона: давление смеси газов равно сумме давлений ее составных частей. Следующим примером можно иллюстрировать компрессионный метод получения бензина из нефтяного газа. Допустим, что мы имеем природный газ с содержанием в нем гексана 1,5% по объему (примерно 2,4 л на 30 м3 газа) при 27°. Давление паров гексана при 27° равно 0,203 atm. Давление, необходимое для выделения гексана из газа путем конденсации, будет Р = P1∙100/1,5, где Р1 - давление пара гексана при 27°, или Р = 0,203∙100/1,5 = 13,6 atm.

При 0° для выделения из нефтяного газа 1,5% гексана потребуется давление только P = 0,063∙100/1,5 = 4,2 atm. Схема конденсационной установки для получения бензина из газа представлена на фиг. 1.

Газ из нефтяных скважин по трубам поступает через скруббер в компрессионную установку газолинового завода. Здесь газ в компрессоре А сжимается и под тем же давлением поступает в холодильник В, который охлаждается водой; отсюда охлажденный газ поступает в приемник С, где отделяются жидкие углеводороды. Количество выхода бензина из газа зависит: 1) от %-ного содержания в природном газе пентана и более тяжелых углеводородов, 2) от применяемого в компрессоре давления, 3) от температуры холодильника. Газ «богатый» выгодно перерабатывать на бензин компрессионным методом, «бедный» газ - путем абсорбции. В компрессионных установках обычно применяется система двойной компрессии. В первом компрессоре, низкого давления, газ обычно сжимается до 1,5—3,5 atm, во втором компрессоре, высокого давления, газ сжимается до 18 atm. Т. о. процесс идет по следующей схеме: I стадия - сжатие газа в компрессоре низкого давления и прохождение газа через холодильник и 1 приемник; в этой стадии в 1 приемнике бензина получается до 10% общего его количества; II стадия - по выходе из 1 приемника газ поступает в компрессор высокого сжатия, далее во 2 холодильник и 2 приемник, где и собирается главная масса газового бензина, получаемого из нефтяного газа. Усиление конденсации достигается большими давлениями, до 24,5 atm; но с увеличением давления в газовом бензине начинает растворяться значительное количество углеводородных газов, метана и этана, которые снова бурно вырываются из газового бензина, как только он приходит в соприкосновение с атмосферой, и захватывают с собой и часть жидких углеводородов, составляющих газовый бензин. Т. о. в результате применения больших давлений часть полученного из газа бензина теряется. В некоторых установках сжатый природный газ расширяется не в приемнике или трубках, а в так называемом экспандере. Экспандер это та же паровая машина, но работающая не паром, а расширением сжатого газа. Температура газа в экспандерах понижается в некоторых случаях до 55°. Систему с установкой экспандеров следует считать наиболее совершенной для получения газового бензина методом компрессии. Попадающие в такую компрессионную установку кислород воздуха, а также другие инертные газы и пары воды понижают работоспособность компрессионных установок.

Способ абсорбции. Метод получения газового бензина по способу абсорбции очень похож на способ получения бензола и толуола из газа коксовальных печей путем абсорбции; разница заключается лишь в том, что извлечение газового бензина из нефтяного газа происходит при сравнительно высоких давлениях, необходимых для того, чтобы не нарушать постоянства давления в газовой сети.

Нефтяной газ подается компрессором А (фиг. 2) в холодильник В и далее в абсорбер С, в котором навстречу газу течет абсорбирующая его жидкость, которая, поглотив жидкие углеводороды из природного газа, переносит их в куб D, откуда эти жидкие углеводороды при помощи пара, вводимого в куб по трубке Е, дистиллируются через расширитель М в холодильнике F. Из холодильника F жидкие углеводороды собираются в виде газового бензина в приемнике g. Роль абсорбента в данном случае сводится к тому, чтобы быть проводником для бензина при переводе его из резервуара абсорбера в перегонный куб D, откуда абсорбирующее масло снова возвращается в резервуар абсорбера С для дальнейшего поглощения газового бензина из природного газа. При этом способе переработки нефтяного газа качество бензина и % его выхода зависят от следующих причин: 1) от количеств жидких углеводородов, находящихся в нефтяном газе; 2) от температуры абсорбирующей жидкости и нефтяного газа, проходящего через резервуар абсорбера (при холодном газе выход бензина больше); 3) от давления, под которым газ поступает в резервуар абсорбера (высокое давление дает более высокий выход газового бензина); 4) от абсорбирующей способности жидкости, употребляемой в качестве абсорбента. Как общее правило абсорбирующая жидкость должна быть более тяжелой, чем бензин, находящийся в природном газе.

Абсорбент твердый. Абсорбент, поглощающий бензин из газа, может быть не только жидким, но и твердым, - например, активированный уголь, силикагель.

Природный газ подается в компрессор А (фиг. 3), откуда гонится к холодильнику В и далее в абсорбирующую установку С и С1, абсорбирующие резервуары которой заполнены активированным углем. Когда активированный уголь резервуара С достаточно насытился бензином, абсорбер С посредством клапана выключается, и с компрессором посредством другого клапана соединяется абсорбер С1, активированный уголь которого, в свою очередь, начинает поглощать бензин из нефтяного газа. В это время в резервуар С подается перегретый пар по трубке К, и бензин из этого поглотителя при помощи пара дистиллируется через холодильник D в резервуаре Е. Затем ту же операцию повторяют с резервуаром С1, а резервуару С дают время остыть. Если в установке имеются три резервуара с поглотителями, то такая установка может работать непрерывно.

Газовый бензин, полученный из природного газа по методу абсорбции активированным углем, отличается от других газовых бензинов следующими качествами: он обладает более низким давлением паров, чем газовый бензин, полученный по какому-либо другому методу, и не загрязняется частицами абсорбирующей жидкости, как это происходит при получении газового бензина по методу абсорбции его жидкостью. Количественная способность угля абсорбировать бензин из природного газа зависит как от качеств самого активированного угля, так и от природы газа.

Т. к. нефтяной газ состоит главн. образ. из углеводородов парафинового ряда, то и бензин из газа также состоит из углеводородов парафинового ряда. Последнее обстоятельство дает возможность, зная состав нефтяного газа, простым способом, а именно - определением удельного веса бензина, устанавливать приблизительно химический состав его:

Газовый бензин по причине его большой летучести непригоден для рынка. Чтобы приготовить из газового бензина моторное топливо для легких двигателей, надо предварительно смешать газовый бензин с нефтяным.

В Америке смешивают газовый бензин с заводским бензином в различных пропорциях, руководствуясь при этом желательными техническими качествами окончательной смеси.

Окончательная смесь заводского дистиллята и газового бензина употребляется по преимуществу как моторное топливо для легких двигателей, но м. б. также применена и для других промышленных целей, а именно - как растворитель, для чистки, для отопления и т. д.

Т. к. большая часть бензина из газа применяется как моторное топливо, то методы технической оценки его те же, которые обычно применяют к моторному бензину, получаемому иными путями, а именно бензину из нефти и бензину-крекинг. То обстоятельство, что газовый бензин получается из нефтяного газа, позволяет для его оценки пользоваться по преимуществу только знанием его удельного веса и разгонки, т. е. его начальной температуре кипения, % дистиллирования при различных температурах, конечной температуре кипения (сухой точки) и количества остатка в колбе. Докторская проба, % непредельных углеводородов, цвет и коррозия для газового бензина определяются сравнительно редко; так же редко делается испытание газового бензина на упругость его паров.

По способности сопротивления детонации различные углеводороды м. б. расположены в следующем порядке: парафины (наибольшая склонность к детонации), олефины, нафтены, ароматики (наименьшая склонность к детонации). Так. обр. сам по себе газовый бензин, состоящий по преимуществу из парафинов, в сильной степени склонен к детонации. Чтобы избежать этого недостатка, к моторному бензину, когда это требуется, примешивают антидетонирующие вещества, к которым принадлежат углеводороды ряда СnН2n—6, а также другие искусственные антидетонирующие вещества.

Колоссальное распространение двигателей внутреннего сгорания, потребляющих для своей работы бензин, ставит перед нефтяной промышленностью задачу по изысканию новых путей его получения. С каждым годом, благодаря все время увеличивающемуся спросу на бензин, производитель его принужден делать все более глубокие отборы бензина и т. о. понижать летучесть бензина. Потребитель же по многим причинам требует от бензина хорошей летучести. Это глубокое противоречие между потребителем и производителем м. б. разрешено лишь путям компромисса. Появление на рынке газового бензина отчасти разрешает эту топливную проблему. Газовый бензин позволяет употреблять в дело малопригодные как моторное топливо «тяжелые» углеводороды. В настоящее время в США из полного количества добываемого бензина 69% приходится на бензин перегонки, 24% - на бензин-крекинг и 7% - на газовый бензин. Эти 7% газового бензина, благодаря тому, что они смешиваются с тяжелым бензином, позволили увеличить общее количество моторного топлива в США на 20%.

Бензин из газа впервые в США был получен в 1903—04 г. В 1911 г. было переработано нефтяного газа 0,5% от общего его количества, в 1916 г. - 27,7%, а в 1919 - уже 39%. Рост развития газолинового дела в Америке с 1911 по 1922 г. можно представить следующей таблицей:

В СССР за последнее время также обращено серьезное внимание на газовое хозяйство, и 11 августа 1924 г. в Грозном начал действовать первый газолиновый завод на территории СССР с пропускной способностью 11000—14000 м3 газа в сутки.

Источник: Мартенс. Техническая энциклопедия. Том 2 - 1928 г.

AzbukaMetalla.ru

Получение метанола в домашних условиях

Получение метанола

Для улучшения антиденатационных свойств метанол стали использовать с 80-х годов прошлого века, - в качестве 15%-й добавки к бензинам низких сортов.

Краткие сведения о метаноле. Метанол, метиловый спирт, древесный спирт, карбинол, СН3ОН — простейший алифатический спирт, бесцветная жидкость со слабым запахом, напоминающим запах этилового спирта. Температура кипения +64,5°C, температура замерзания —97,8°C, плотность — 792 г/л. Пределы взрывоопасных концентраций в воздухе 6,7—36% по объему. Октановое число больше 110. Температура воспламенения 467°C, Теплота сгорания 24000 кдж/кг — меньше, чем у бензина (44000 кдж/кг), поэтому расход метанола (в литрах) будет выше примерно в два раза. Как топливо применяется в гоночных машинах, например в "Формуле-1".

МЕТИЛОВЫЙ СПИРТ смешивается в любых концентрациях с водой, органическими растворителями и ЯДОВИТ, выпитые 30 миллилитров метанола могут быть СМЕРТЕЛЬНЫ, если не принять срочных мер! Пары также ядовиты!

Традиционно метанол получали возгонкой древесины. Но более перспективен способ получения метанола — из природного газа. В дальнейшем по мере совершенствования этой технологии возможны и другие источники сырья, например биомасса(навоз). Промышленные способы получения метилового спирта пока недостаточно эффективны для использования метанола в качества топлива, но в ближайшие десятилетия цена на нефть будет только подниматься и ситуация может изменится в пользу спиртового топлива (особенно при использовании автомобилей на топливных ячейках). Природный газ, как известно, почти на 100% состоит из метана — СН4. Ни в коем случае не надо его путать с баллонным газом пропан-бутаном, последний является продуктом крекинга нефти и используется напрямую в качестве автомобильного топлива. Впрочем, это и делают многие автомобилисты, устанавливая соответствующее оборудование. А при использовании метанола никакого дополнительного оборудования не требуется. Мы подробно опишем, как, используя метанол в качестве топлива, как можно существенно повысить мощность двигателя. Пока же только скажем, что это достигается увеличением диаметра главных жиклеров или уменьшением количества воздуха в топливной смеси. Метан при неполном окислении превращается в окись углерода и водорода, реакция эта выглядит следующим образом: 2СН4+О2—>2СО+4Н2+16,1 ккал. Более простой технологически способ проходит по реакции конверсии метана с водяным паром: СН4+Н20—>СО+ЗН2 - 49ккал. В первом уравнении стоит +16,1 ккал. Это означает, что реакция идет с выделением тепла. Во втором - с поглощением. Тем не менее, мы остановимся на втором способе получения окиси углерода и водорода. При наличии этих двух компонентов уже можно напрямую синтезировать метанол. Реакция идет по следующей формуле: СО+2Н2<=>СН3ОН.

Сложность в том, что конечный продукт получается лишь при высоком давлении и высокой температуре (Р>20 атм., Т=350 градусов), но при наличии катализатора этот процесс смещается вправо и при низком давлении. Полученный метанол выводится из реакции охлаждением до конденсации, а не сконденсировавшие газы будем сжигать. При правильном сжигании остатков водорода и СО никаких вредных веществ не выделяется (отходы СО2 и Н20 — безвредны), так что никаких вытяжных устройств не требуется. Дальше метанол заливается через трубку, обязательно с герметизацией (!), в канистру. Как видите, химический процесс очень прост, он основывается на двух реакциях. Сложности есть только технологические и по мерам безопасности. Мы ведь имеем здесь дело с сильно горючими и ядовитыми веществами. Нужно опасаться как взрыва, так и утечки этих газов. Поэтому — необходимо строжайше соблюдать технологию и правила обращения, которые мы будем описывать. Для сборки установки нужно будет приобрести: лист нержавеющей стали (1мм), трубку из "нержавейки" бесшовную, наружным диаметром 6—8 мм, толщиной стенок не менее 1 мм и длиной около 2 метров, компрессор от любого бытового холодильника (можно со свалок, но рабочий). Ну и само собой разумеется нужна будет аргоновая электросварка.

ТЕПЛООБМЕННИКИ

Теплообменники обычно состоят из трубок, окруженных охлаждающей средой. В обиходе их называют "змеевиками". Для жидкостей, теплопроводность которых велика, такой теплообменник может быть приемлем. Но с газами ситуация совершенно другая. Дело в том, что на небольших скоростях поток газа движется ламинарно и практически не обменивается теплом с окружающей средой. Посмотрите на дымок, подымающийся от горящей сигареты. Эта стройная струйка дыма и есть ламинарный поток. Сам факт. что дымок поднимается вверх, говорит о его высокой температуре. А то, что он остается цельным прутком примерно на высоту до 20 сантиметров подъема, свидетельствует о сохранении им тепла. То есть на этом расстоянии даже при совсем малых скоростях поток газа не успевает охладиться, обменяться теплом с воздухом. Именно вследствие ламинарности потока газовые теплообменники приходится конструировать громоздкими. Внутри их трубок появляются "сквозняки", которые даже на десятках метров практически не дают теплообмена.Это хорошо известно тем, кто когда-либо гнал самогон. (Всякий опыт полезен!) Длинная, интенсивно охлаждаемая трубка, из неё вытекает конденсат, но при этом обязательно идет и пар. Значит, теплообмен недостаточно эффективен. Проблема, однако, имеет решения и оно может быть несложным. Наполнить трубку, например, медным порошком (см. рис.1). Для производительности 10 л/час теплообменник может быть длиной 600 мм, а для 3 л/час должно хватить и 200 мм, высота h — 20 мм. Размеры частиц могут варьироваться, оптимум где-то в пределах 0,5—1 мм. Учитывая задачи теплообмена, материалом корпуса могут быть и железо, и медь, и алюминий, материалом набивки — медь, алюминий, — что найдется. Тогда вокруг каждой частички металла струйка газа будет образовывать завихрения. Тем самым сразу ликвидируются сквозняки и поток становится турбулентным. Ну и одновременно увеличивается в огромной степени контакт газа с охлаждаемой поверхностью. Набитый в трубку порошок меди постоянно принимает или отдает тепло стенкам, и поскольку теплопроводность меди примерно в 100 тысяч раз выше теплопроводности газа, то газ сравнительно быстро примет температуру стенок, если мы будем их интенсивно охлаждать. Нужно учесть, что с уменьшением размеров частиц и увеличением их количества растет также и сопротивление газовому потоку. Поэтому вряд ли удастся использовать для теплообменника частицы мельче 0,5—1 мм. Проточную охлаждающую воду, конечно, целесообразно пропускать навстречу потоку газа. Это дает возможность в каждый точке теплообменника иметь свою определенную температуру. Поскольку тепловой контакт у нас близок к идеальному, температура на выходе конденсируемой жидкости будет равна температуре охлаждающей жидкости. Вот каков по идее обсуждаемый здесь теплообменник. Приведенный эскиз есть не что иное, как дистиллятор, он же самогонный аппарат, он же теплообменник. Производительность такого дистиллятора прикидочно 10 литров в час.  Его также можно применять практически в любых целях, включая установку для получения обычного этилового спирта (см."Приоритет" № 1'91г и № 1-2'92г). Такие теплообменники при огромной производительности в сотни раз меньше существующих.

 КАТАЛИТИЧЕСКИЙ НАСОС (РЕАКТОР, см.рис.2)

В существующих химических газовых процессах обычный катализатор идет в гранулах довольно значительного размера от 10 до 30 мм. Площадь контакта газа с такими шариками в тысячи раз меньше, чем если бы мы использовали частицы в 1—1000 микрон. Но тогда проходимость газа весьма затруднится. Кроме того, мельчайшие частицы катализатора довольно скоро выйдут из строя вследствие поверхностного загрязнения. Нами найден способ увеличить площадь контакта газа с катализатором, не затрудняя проходимости его в реакторе, и одновременно непрерывно производить очистку от так называемого "отравления" самого катализатора. Делается это следующим образом. Порошковый катализатор смешивается с ферромагнитными частицами - железным либо ферритовым порошком, который можно получить, разбивая магниты от неисправных громкоговорителей (прим.- ферриты теряют магнитные свойства при температуре выше 150 град.С), а так как ферриты очень твёрдое вещество - это их полезное свойство пригодится вдальнейшем (читайте ниже - чтобы специально не добавлять абразивный порошок).

Смесь ферромагнитного порошка с катализатором помещается в немагнитную трубку, например, из стекла, керамики, можно и в алюминиевую или медную. Теперь смотрите, какая может быть схема. Снаружи трубки идут обмотки катушек. Каждая из них включена через диоды, так, например, как дано на рис.3.

При включении в сеть переменного тока обмотки включаются поочередно с частотою 50 Гц. При этом ферромагнитный порошок непрерывно сжимает и расширяет катализатор, обеспечивая пульсирующую проходимость газа. Если же включать электромагниты в трехфазною сеть (см. рис.4), то в этом случае обеспечивается поступательная пульсация сжатий, и за счет этого непрерывно газ будет сжиматься в продольном направлении вперед. Таким образом, система работает, как насос. При этом — многократно перемешивая газ, сжимая и расширяя его и тысячекратно увеличивая интенсивность процесса на катализаторе. Попутно частички катализатора трутся друг о друга и о ферритовый абразивный порошок, что приводит к их очистке от загрязняющих пленок. Схема работает следующим образом:с частотой 50 Гц происходит смена полярности на питании. Ток попеременно проходит по обмотке 1,3 и 2,4 (см. рис. 2). При этом в них появляется магнитное поле, которое намагничивает ферромагнитные частицы и заставляет их взаимодействовать друг с другом, вовлекая в движение частицы катализатора. Таким образом попеременно возникает для газа проходимость сквозь мелкие частицы, сменяемая большим сопротивлением, оказываемым сдавленной массой частиц. И самое главное: активность катализатора, сжимающего и разжимающего реагирующий газ, по еще не изученным причинам повышается дополнительно в 20—50 раз. Работа описанного каталитического реактора эквивалентна реактору размером метров в 20—30. Увеличить производительность реактора можно, включая обмотки в трехфазную сеть. При этом система работает не как клапаны, а как активный насос, совмещая все положительные эффекты первой схемы и дополнительно принуждая газ перемещаться в направлении смещения сдвига фаз. При таком включении важно правильно выбрать фазировку. Итак, в реакторе, приведенном здесь, работают следующие положительные факторы:  1. Увеличение площади катализатора в 300—1000 раз за счет уменьшения размеров частиц. 2. Происходит постоянная очистка катализатора от поверхностного загрязнения.

 3. Постоянные пульсации давления реагирующих газов между частицами катализатора, а во второй схеме дополнительно происходит еще и перекачки газа внутри самого реактора.

 Недостаток этого реактора — повышенное сопротивление потоку газа — устраняется попеременным уплотнением — освобождением частиц внутри четных—нечетных катушек. Одна важная деталь: необходимо теплоизолировать катушки от корпуса реактора. В связи с этим, а также из практических соображений автором сайта были внесены следующие изменения (см.рис.справа):

 Из болванки (бронзы или латуни) диаметром 50 мм, выточим корпус реактора. Размеры можно взять прежние - 160 мм общая длина, рабочая реакторная длина около 140мм, внут. диаметр 33 мм, толщина стенок приблизительно 5...8 мм, т.е. внешний диаметр около 50 мм и того же диаметра - заглушки, их толщина по 20 мм и на каждой нарезана резьба М36х1,0мм и длиной по 10мм. Всё это должно быть сделано из одного и того же материала! К заглушкам в отверстия вставляются и привариваются переходные штуцера или просто соединительные бесшовные стальные трубки с внутренним диаметром 6...8 мм и толщиной стенок около 2 мм. Данную конструкцию необходимо снаружи теплоизолировать листовым асбестом и разделить по всей длине на четыре секции с помощью пяти перегородок, также вырезанных из листового асбеста. Для фиксации перегородок, - можно промазать их силикатным клеем, после просушки наматавается медная проволока (d=0,15мм) в каждую секцию. Сопротивление, измеренное омметром, для каждой секции должно быть около 1200_Ом. Обмотки влючаются по схеме рис.3 через регулятор напряжения (напр: лабораторный трансформатор - ЛАТР), чтобы избежать перегрева обмоток, их надо охлаждать, для этого можно проложить под обмотки стеклянные трубочки диаметром 6...8мм, возможен принудительный обдув катушек, с контролем температуры внутри реактора. Следует отметить, что подобная схема реактора(рис.2) была заявлена на патент (автор - Г.Н. Вакс), она может работать в любых каталитических газовых процессах. Поэтому для химиков — это не домашняя разработка, а принципиально новый, еще не совсем изученный, но эффективный реактор. По всей видимости, эффекты усилятся при подаче прямоугольных импульсов или колебаний высокой частоты.ПРОИЗВОДСТВО СИНТЕЗ—ГАЗА.

СИНТЕЗ—ГАЗОМ называется смесь h3 и СО, необходимая для производства метанола. Поэтому вначале рассмотрим технологию синтез-газа. Традиционные методы получения СО и h3 из метана (Ch5) состоят в том, что метан смешивается с водяным паром и в нагретом состоянии поступает в реактор, где к паро-метанной смеси добавляется дозированное количество кислорода. При этом происходят следующие реакции:[1] СН4 + 202 <—> СО2 + 2Н2О + 890 кдж ; [2] СН4 + Н20 <—> СО + ЗН2 - 206кдж ; [3] СН4 + СО2 <—> 2СО + ЗН2 - 248кдж ; [4] 2Н2 + 02 <—> 2Н2О + 484 кдж ;

 [5] СО2 + Н2 <—> СО + Н20 - 41,2кдж.

Как видно, некоторые реакции эндотермические — с поглощением тепла — а некоторые экзотермические — с выделением. Наша задача создать такой баланс, чтобы реакции шли с контролируемым выделением тепла. Итак, вначале требуется дозированное смешение Н2О и СН4. Традиционные методы ведения этого процесса сложны и громоздки. Мы будем насыщать метан водяными парами путем пропускания пузырьков этого газа через нагретую до 100 градусов Цельсия воду, а чтобы пузырьки активно разбивались, размещаем на их пути твердые ферритовые частички размером 1—2 мм. Но в этой массе рано или поздно пузырьки находят дорогу и затем, практически не разбиваясь, проходят по образовавшемуся каналу. Чтобы этого не происходило, частички из феррита и смесительную камеру ставим в соленоид с подачей переменного тока. В этом существенное отличие нашего диспергатора (см.рис 5). Под действием вибрации частиц феррита в пульсирующем магнитном поле пузырьки метана постоянно разбиваются, проходят сложный зигзагообразный путь и насыщаются парами воды. К соленоиду жестких требований нет, поскольку запитывается он от ЛАТРа или от регулятора света (в продаже имеются). Регулировка напряжения на соленоиде необходима, чтобы, изменяя магнитное поле, одновременно изменять и степень насыщения метана парами воды. О цели этих изменений будет сказано ниже. Количество витков в катушке может быть от 500 до 1000. Диаметр провода 0,1— 0,3мм. Труба диспергатора берется из неферромагнитного металла, поэтому в переменном магнитном поле она будет разогреваться. Кроме того, и метан поступает в воду разогретым. Поэтому специального нагревателя для воды не требуется (прим.- ошибочное мнение! Воду предварительно надо нагреть до кипения, например газовой грелкой, иначе не получить нужного количества водяного пара). Ещё необходим бачок для подпитки водой, поскольку она непрерывно расходуется на образование паро-метановой смеси, для этой цели подойдет сливной бачок от стандартного унитаза, чьё сливное отверстие закрывается стальной пластиной, с приваренной сливной трубкой, конец этой трубки вставляется в диспергатор и изгибается вниз на 180°(см.рис.5), делается это с целью безопасности, чтобы исключить попадание газа-метана в бачок.

 ВНИМАНИЕ: необходимо расположить бачок таким образом, чтобы уровень воды в смесителе—диспергаторе не поднимался выше 150 мм, т.е. до половины его высоты, это связано с величиной давления в газовой сети (=150 мм водного столба!), иначе вода будет препятствовать проходу газа-метана в диспергатор. Также воду перед подачей в бачок необходимо очистить от примесей хлора. С этим справятся стандартные средства очистки воды для бытовых целей.

 Готовая паро-метановая смесь разогревается до температуры 550—600 градусов в ТЕПЛООБМЕННИКЕ. Устройство теплообменника(рис.6) уже достаточно подробно было описано выше (см. рис.1). Поэтому приведем только уточнение размеров. Теплообменник изготавливается из нержавеющей стали, обязательно варится в среде инертного газа. Трубки из нержавеющей стали крепятся к корпусу только сваркой. Наполнитель теплообменника изготовляется из 1—2 миллиметровых частиц керамики. Это может быть, например, дробленая фарфоровая посуда. Наполнять емкость надо достаточно плотно, с обязательным встряхиванием. Возможная ошибка: при недостаточном наполнении теплообменника частицами керамики газ найдет себе дорогу, и потоки будут ламинарными, чем ухудшается теплообмен. ВНИМАНИЕ:ВСЯ СИСТЕМА ДОЛЖНА БЫТЬ ГЕРМЕТИЧНА. Никаких утечек! В теплообменнике 3.2 (см.рис.10) температуры высокие! Никакие уплотнители не применять — только аргонная сварка.

САМЫМ СЛОЖНЫМ И ОТВЕТСТВЕННЫМ УЗЛОМ УСТАНОВКИ ЯВЛЯЕТСЯ КОНВЕРТОР-РЕАКТОР (см. рис.7), где происходит конверсия метана (превращение его в синтез—газ).

Конвертор состоит из кислород-паро-метанового смесителя и реакционных каталитических колонн. Вообще, реакция идет с выделением тепла. Однако в нашем случае, чтобы процесс начался, на подводящих трубках проводим нагрев, поскольку мы осуществляем конверсию метана по реакции [2]: СН4 + Н2О <—> СО + ЗН2 - 206 кдж , с потерей тепла, а значит нужно обязательно подводить тепло в конвертор. Для этого паро-метановый газ мы пропускаем через трубки, обогреваемые горелками. Конвертор работает следующим образом:

 Паро-метановая смесь поступает в камеру, в которой вварены трубки из нержавеющей стали. Количество трубок может быть от 5 до 20 в зависимости от желательной производительности конвертора. Пространство верхней камеры должно быть обязательно плотно набито крупнозернистым песком или дробленой керамикой или крошкой нержавейки, размеры частиц 0,5—1,5 мм. Это необходимо для лучшего перемешивания газов, а самое главное — для пламягашения. При соединени воздуха с горячим метаном может произойти загорание. Поэтому в верхней камере набивка осуществляется с обязательным встряхиванием и досыпкой. Трубки и сборная камера (на рис7.-нижняя), как раз и набиваются частицами, содержащими катализатор — окись никеля.

 Массовая доля никеля в катализаторе при пересчете на NiO, должна составлять не менее 7,5±1,5%. Остаточное содержание метана при конверсии с водяным паром природного газа (соотношение пар:газ=2:1), при температуре 500° — 38,5%, а при 800° — не более 1,5%. Массовая доля "вредной" серы в пересчете на SОз, должна быть не более 0,005%.

 Изготовить такой катализатор можно самому (но всё же лучше найти готовый, промышленный катализатор). Для этого нужно на воздухе прокалить частицы никеля. Если чистого никеля нет, то можно его приготовить из никель-содержащих 10—15—20-копеечных монет СССР. Сотрите их на грубом абразивном круге или мелкой фрезой. Попадание абразива в набивку допускается. Полученный порошок прокалите и смешайте в пропорции 1/3 объема порошка с 2/3 объема молотой керамики (0,5 мм) или чистого грубозернистого песка.

 Промежуток между верхними частями трубок заполняются на 10 см любым высокотемпературным теплоизолятором. Это делается, чтобы не перегревать верхнюю камеру. Есть простой способ получения такого теплоизолятора. Обычный канцелярский силикатный клей смешивают с 10—15 весовыми процентами тонкомолотого мела или талька или глины. Перемешивают тщательно. Наливают смесь тонким слоем и сразу же прижигают огнем паяльной лампы. Вскипевшая в клее вода образует пемзообразную белую массу. Когда она остынет, опять наливают на нее слой клея с мелом и опять обрабатывают пламенем. И так повторяют до тех пор, пока не получат, необходимый слой теплоизолятора. После окончания сборки конвертора его помещают в стальной короб, которой обязательно теплоизолируют материалом, выдерживающим температуру до 1000 градусов, например, асбестом. Горелки инжекционного типа, могут быть любые, от 5 штук до 8. Чем их больше, тем равномернее нагрев. Возможна также система, использующая одну горелку. Пламя ее имеет несколько выходов через отверстия в трубе. Газовые горелки есть в продаже, например, те, что используются для обработки лыж. Есть в продаже также газовые паяльные лампы, поэтому мы даем только общую схему. Горелки должны соединяться параллельно и регулироваться стандартным газовым краном, например, от газовой плиты, но лучше взять автоматический регулятор от бытовой газовой плиты - дороговат, но надёжен и удобен - с его помощью можно задать нужную температуру внутри конвертора-реактора, повысив тем самым степень автономности установки вцелом.ЕЩЁ ОДИН ИЗ ОТВЕТСТВЕННЫХ УЗЛОВ — это эжекторный смеситель подачи воздуха и метана в камеру конвертора (см.рис.8.) Эжекторный смеситель воздуха и метана состоит из двух сопел одно подает метан, насыщенный парами воды, а другое — эжектор воздуха. Воздух поступает от компрессора , количество его регулируется клапаном давления (Рис.9.). Компрессор может быть практически от любого бытового холодильника, давление регулируется от "нуля" до необходимого, которое будет не на много выше давления в газовой магистрали (т.е. =>150 мм.вод.ст.).

 Необходимость подачи воздуха (кислорода) в конвертор обусловлена тем, что по реакции [5] часть водорода должна быть поглощена с выделением СО, тем самым увеличивается количество окиси углерода до пропорции СО:Н2 == 1:2, т.е. число молей (объемов) водорода должно быть в два раза большим объемов окиси углерода (прим.- наличие избыточного воздуха приведёт к синтезу побочных продуктов - кислот, высших спиртов - "сивухи" и прочих вредных компонентов) . Но возникновение CO2произойдет по реакции [1] с выделением большого количества тепла. Поэтому вначале процесса компрессор мы не включаем и винт держим вывернутым. Воздух не подаем. И по мере разогрева камеры и включении всей системы будем постепенно, включив компрессор и вворачивая винт клапана давления, увеличивать подачу воздуха и одновременно уменьшать пламя на горелках, Контроль будем вести по количеству излишков водорода на выходе из конденсатора метанола (теплообменник 3. и 3.1) через фитиль(13-см.рис.10), сокращая его. Фитиль для дожига излишка синтез—газа представляет собой 8-миллиметровую трубку, длиной 100 мм, набитую медным проводом по всей длине,- чтобы пламя не пошло вниз, в канистру с метанолом. Мы разобрали все узлы установки получения метанола. Как ясно из предыдущего, вся установка состоит из двух основных узлов: конвертора для создания синтез—газа (конверсия метана) и синтезатора метанола. Синтезатор (каталитический насос,см.рис.2) достаточно хорошо описан выше. Единственно, что следует добавить — это необходимость установки теплоизолятора между трубой и катушкой. Как изготовить теплоизолятор, мы сообщали при описании изготовления конвертора (см.рис.7).

 ПЕРЕЙДЕМ К ОБЩЕЙ СХЕМЕ УСТАНОВКИ. Работа общей схемы: из газовой магистрали метан поступает через вентиль (14) в теплообменник (3.1), разогревается до 250—300°C, затем поступает в фильтрующий реактор (15), который работает по принципу каталитического насоса (см.рис.2-только диаметр трубы=8см), содержит в себе окись цинка - для очистки газа от примесей серы и лишь затем газ поступает в смеситель—диспергатор (2), где насыщается парами воды. Вода (дистиллированная) добавляется в диспергатор непрерывно из бачка (1). Вышедшая газовая смесь поступает в теплообменник (3.2), где разогревается до 500—600°C и идет в конвертор (4). На NiO — катализаторе (см.ГИАП-16) при температуре 800°C происходит реакция [2]. Для создания этой температуры работают горелки (12). После установления температурных режимов включается компрессор (5) и постепенно подается воздух в смеситель (11). Повышение давления осуществляется путем вворачивания винта в клапане (8). Одновременно уменьшаем пламя на горелках (12) при помощи вентиля (14.2). Полученный на выходе синтез—газ поступает в теплообменники (3.1; 3.2), где охлаждается до температуры 320—350°. Затем синтез—газ поступает в синтезатор метанола (6), где на катализаторе из смеси однинакового количества ZnO, CuO, CoO (напр.-СМС-4; К-140) происходит превращение его в метанол СН3ОН. Смесь газообразных продуктов на выхода охлаждается в теплообменнике (3.3). который описан выше (см.рис.1) и поступает в накопительный бачок (10). В верхней его части находится трубка — фитиль (13), где дожигаются продукты, которые не прореагировали в процессах. Поджигание необходимо, обязательно!

 

НЕСКОЛЬКО СОВЕТОВ. Катализаторы можно готовить самому путем прокаливания порошковых металлов на воздухе. Измерение температуры можно осуществлять при помощи термоиндикаторных красок, которые в настоящее время достаточно распространены. Измерение нужно проводить на входных и выходных трубках. Если термокрасок вы не достанете, можно изготовить сплав олово — свинец — цинк. При определенных, найденных экспериментально пропорциях смешения они будут иметь необходимую температуру плавления. Нанося полученные сплавы на трубки и следя за их плавлением, можно с некоторой погрешностью контролировать температуру. Если вы не допустили образования газовых карманов (т.е. полностью заполнены все полости соответствующей крошкой), если устранили утечки и самое главное — своевременно зажжен и постоянно горит фитиль (11), то установка будет абсолютно безопасна. Подбирая катализаторы можно повышать тепловой КПД, увеличить процент выхода метанола. Для достижения оптимума здесь требуются эксперименты. Они проводятся во многих институтах разных стран. В России к числу таких НИИ относится, например, ГИАП(Государственный институт азотной промышленности). Следует иметь в виду, что получение метанола из природного газа в компактных установках — новое дело, и многие процессы еще недостаточно изучены. В то же время метанол — одно из самых экологически чистых и практически идеальных топлив. И, самое главное, получение его основано на безграничных и возобновляемых ресурсах — метане.

 По материалам автора-изобретателя Г.Вакса.

eurosamodelki.ru


Смотрите также